Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm
نویسندگان
چکیده
We present measured scattering matrices as functions of the scattering angle in the range 5ø-173 ø and at wavelengths of 441.6 nra and 632.8 nra for seven distinct irregularly shaped mineral aerosol samples with properties representative of mineral aerosols present in the Earth's atmosphere. The aerosol samples, i.e., feldspar, red clay, quartz, loess, Pinatubo and Lokon volcanic ash, and Sahara sand, represent a wide variety of particle size (typical diameters between 0.1 and 100 pra) and composition (mainly silicates). We investigate the effects of differences in size and complex refractive index on the light-scattering properties of these irregular particles. In particular, we find that the measured scattering matrix elements when plotted as functions of the scattering angle are confined to rather limited domains. This similarity in scattering behavior justifies the construction of an average aerosol scattering matrix as a function of scattering angle to facilitate, for example, the use of our results for the interpretation of remote sensing data. We show that results of ray-optics calculations, using Gaussian random shapes, are able to describe the experimental data well when taking into account the high irregularity in shape of the aerosols, even when these aerosols are rather small. Using the results of ray-optics calculations, we interpret the differences found between the measured aerosol scattering matrices in terms of differences in complex refractive index and particle size relative to the wavelength. The importance of our results for studies of astronomical objects, such as planets, comets, asteroids, and circumstellar dust shells is discussed.
منابع مشابه
Size distribution of mineral aerosol: using light-scattering models in laser particle sizing.
The size distribution of semitransparent irregularly shaped mineral dust aerosol samples is determined using a commonly used laser particle-sizing technique. The size distribution is derived from intensity measurements of singly scattered light at various scattering angles close to the forward-scattering direction at a wavelength of 632.8 nm. We analyze the results based on various light-scatte...
متن کاملExperimental Study of Charging Efficiencies and Losses of Submicron Aerosol Particles in a Cylindrical Tri-Axial Charger
The object of the present work was to design, construct and evaluate a cylindrical tri-axial charger for charging of submicron aerosol particles by unipolar ions. The corona discharge characteristics, the intrinsic and extrinsic particle charging efficiencies, and the losses of aerosol particles were experimentally evaluated for particle diameters in the range between 50 nm and 500 nm under dif...
متن کاملAnalysis of reflectance spectra of UV-absorbing aerosol scenes measured by SCIAMACHY
[1] Reflectance spectra from 280–1750 nm of typical desert dust aerosol (DDA) and biomass burning aerosol (BBA) scenes over oceans are presented, measured by the space-borne spectrometer Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). DDA and BBA are both UV-absorbing aerosols, but their effect on the top-of-atmosphere (TOA) reflectance is different due to dif...
متن کاملExperimental and computational study of light scattering by irregular particles with extreme refractive indices: hematite and rutile
We present measurements of the complete scattering matrix as a function of the scattering angle of randomly oriented irregular hematite and rutile particles. The measurements were made at a wavelength of 632.8 nm in the scattering angle range from 5–174 degrees. Apart from their astronomical interest, these two samples are extremely interesting from a theoretical point of view, because they bot...
متن کاملInteraction of Laser Beam and Gold Nanoparticles, Study of Scattering Intensity and the Effective Parameters
In this paper, the optical properties of gold nanoparticles investigated. For this purpose the scattering intensity of a laser beam incident on gold nanoparticles has been studied using Mie theory and their respective curves versus different parameters such as scattering angle, wavelength of the laser beam and the size of gold nanoparticles are plotted. Investigating and comparison of the depi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007